ESTIMATION OF PHYTOCHEMICALS AND SUN PROTECTION FACTOR (SPF) NUMBER IN COMMONLY USED ETHANOLIC HERBAL EXTRACTS

aCHANDAKA MADHU, *aABHAKUMARI, *aG.DURGA SUDEEPTHI, *aM.CHANDRA SHEKHAR, *aJ.VAMSHIDHAR REDDY, *aMADHURI VENIGALLA

MLR Institute of Pharmacy, Dundigal (V), Quthbullapur (M), Rr. Dist-500043
Mallareddy Institute of Pharmaceutical Sciences, Dhulappalli, Hakimpet, Telangana

Author for Correspondence: pharmamadhuphd@gmail.com

ABSTRACT

The aim of the present study is phytochemical screening and the ultraviolet absorption properties of ethanolic herbal extracts of some commonly used vegetable sources by determining the sun protection factor (spf) number. The in-vitro SPF number is determined according to the spectrophotometric method described by Mansur et.al., Ethanolic herbal extracts were prepared and after dilution with alcoholic solutions the absorbance were recorded between 290-320 using UV-VIS spectrophotometry. It was observed that all of the ethanolic herbal extract showed some UV protection capability.

Key Words: Sun Protection Factor, Spectrophotometric, Ethanol extract.

INTRODUCTION

The sun is the Natural source of energy which is located at the center of the solar system. It mainly consist of hydrogen helium and heavy metals. The sun emittes different types of electromagnetic radiations (IR, UV & Visible) in which UV Rays shows both beneficial (synthesis of vitamin D3) as well as harmful effects (allergic reaction), immuno suppression, photo aging and skin cancer. Based upon the wave length range the UV Radiation is mainly divided into three distinct bands UVA (320-400nm), UVB (290-320nm) and UVC (200-290nm). In which UVC is effectively filtered by ozone layer. UVB is primarily associated with Erythema and sun burn. UVA is primarily associated with skin cancer.

The care products are widely used to protect the skin from UV Radiations by physical sun screens (those that reflect the sun light) or chemical sun screens (those that absorb the sun light). But sun screen products are causing hypersensitivity on sensitive skins which we can rectify by using herbal sun screens. However now a day’s research have climbed that cosmetic having herbal components are more suitable for hyper allergic skin because they are less irritant and more easily adjustable to the skin. So the present study is to estimate the phytochemicals and SPF number of Herbal extracts which are having a good anti-oxidant property.

SPF can be calculated by applying the following formula know as Mansur equation

$$SPF = \frac{CF \times \sum \text{EE} (\lambda) \times \text{ABS} (\lambda)}{290}$$

WHERE CF =Correction Factor (10), EE (\lambda) = Erythrogenic Effect of Radiation With Wavelength (\lambda), ABS (\lambda) = Spectrophotometric Absorbance Value at Wavelength (\lambda) The Values of EE X (\lambda) are Constants. Which is given in the table

<table>
<thead>
<tr>
<th>wave length</th>
<th>EE*I</th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td>0.015</td>
</tr>
<tr>
<td>295</td>
<td>0.0817</td>
</tr>
<tr>
<td>300</td>
<td>0.2874</td>
</tr>
<tr>
<td>305</td>
<td>0.3278</td>
</tr>
<tr>
<td>310</td>
<td>0.2874</td>
</tr>
<tr>
<td>315</td>
<td>0.0837</td>
</tr>
<tr>
<td>320</td>
<td>0.018</td>
</tr>
</tbody>
</table>

MATERIALS AND METHODS

MATERIALS REQUIRED

Chemicals Required : Ethanol ,Water
Instruments used : Double Beam-UV-Spectroscopy (UV-Win software), Heating Mantles
Glassware Required: Beaker (50ml & 100ml), Volumetric Flasks (25 ml,50ml & 100 ml), Glass Rods, Pipettes (1ml) ,(500 ml)Round Bottom Flask and Condenser.

COLLECTION AND AUTHENTICATION OF PLANT MATERIAL

The plant material Musa Acuminata Cucumis, Sativus,Carica Papaya,Vitis Vinifera,Malus Domestica,Daucus Calota,Solanum Lycoperisum and Beta Vulgaris was collected in the
month of FEB 2015 from local market, in Gandimaisamma, Hyderabad.

PREPARATION OF ETHANOLIC EXTRACT
The Ethanolic extract of the plant was prepared using reflex condensation process. The fresh fruits about 200g was weighed and placed in a 500 ml round bottom flask with 200ml of ethanol and its refluxed for 8 hrs at 40°C . Then suspension was filtered through a fine muslin cloth. The solvent was evaporated by heating until ¾ is reduced. The remaining solvent is evaporated under room temperature. A semisolid residue was obtained. The percentage yield and phytochemical screening is studied.

RESULTS AND DISCUSSION

SAMPLE PREPARATION
0.5 g of all samples was weighed, transferred to a 50 mL volumetric flask, diluted to volume with ethanol, followed by ultrasonication for 5 min and then filtered through cotton, rejecting the first 5 mL. A 2.5 mL aliquot was transferred to 25 mL volumetric flask and diluted to volume with ethanol. Then a 5.0 mL aliquot was transferred to a 25 mL volumetric flask and the volume completed with ethanol. The absorption data were obtained in the range of 290 to 320, every 5 nm, and 3 determinations were made at each point, followed by the application of Mansur equation.

\[
SPF = CF \times 2^{320} \times EE (\lambda) \times I (\lambda) \times ABS (\lambda)
\]

PREPARATION OF ETHANOLIC EXTRACT
Gandimaisam, Hyderabad.

PHARMANEST • An International Journal of Advances in Pharmaceutical Sciences
Volume 6|Issue 2| March - April 2015
Available online: http://www.pharanest.net
From the table -2 we have come to know the percentage yield of the ethanolic herbal extract were obtained in which the vitis vinifera is having highest yield is about 4.6% and the lowest is musa acuminate is about 2.8%

From the table -3 shows all the ethanolic herbal extracts contain alkaloids, carbohydrates, glycosides, tannins and phytosterol but in Carica Papaya ,Vitis Vinifera and Solanum Lycopersicum the proteins were present where as flavanoids are present in Vitis Vinifera, Daucus Arota and Beta Vulgaris. Especially the saponins were present in Vitis Vinifera and mucilages were present in Beta Vulgaris.

SPF number plays an important role in sun screens for measuring the effectiveness in protecting the skin from sun radiation .From the table -4 We have found that, when the UV radiation range is increasing the absorption by the herbal extracts were gradually reducing . But from the table no-4 we have come to know that the ethanolic herals extract which are used are have some sun protection property having the range of 1.59-1.21 in which Vitis Vinifera is having the highest SPF number of about 1.59 and the lowest is Solanum Lycopersium is about 1.21 SPF number.

CONCLUSION
The SPF values of the ethanolic extracts of some commonly found vegetables sources were evaluated .It was found that all are having almost similar UV protection capabilities, along with their many beneficial effects, easily available, cheap and safety.

CONFLICT OF INTEREST
Authors declare no Conflict of Interest.

REFERENCES